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ABSTRACT

In the instance of two-phase flow, the shock capturing ability of Godunov-type schemes may serve to maintain
robustness and accuracy at the interface. Approximate Riemann solvers have relieved the initial drawback of
computational expensiveness of Godunov-type schemes. In this paper we present an Osher-type approximate
Riemann solver for application in hydrodynamics. Actual computations are left to future research.

Note: This work was performed under a research contract with the Maritime Research Institute Netherlands.

1. INTRODUCTION

The advantages of Godunov-type schemes [1] in hydrodynamic flow computations are not as widely
appreciated as in gas dynamics applications. Admittedly, the absence of supersonic speeds and hence
shock waves in incompressible flow (the prevailing fluid model in hydrodynamics) reduces the neces-
sity of advanced shock capturing schemes. Nevertheless, many reasons remain to apply Godunov-type
schemes in hydrodynamics: Firstly, these schemes have favourable robustness properties due to the
inherent upwind treatment of the flow. Secondly, they feature a consistent treatment of boundary con-
ditions. Thirdly, (higher-order accurate) Godunov-type schemes display low dissipative errors, which
is imperative for an accurate resolution of boundary layers in viscous flow. Finally, the implemen-
tation of these schemes in conjunction with higher-order limited interpolation methods, to maintain
accuracy and prevent oscillations in regions where large gradients occur (see, e.g., [2, 3]), is relatively
straightforward.

In addition, Godunov-type schemes can be particularly useful in hydrodynamics in case of two-phase
flows, e.g., flows suffering cavitation and free surface flows. In these situations, an interface exists
between the primary phase (water) and the secondary phase (air, damp, etc.) and fluid properties
may vary discontinuously across the interface. In our opinion, the ability of Godunov-type schemes
to capture discontinuities is then very useful to maintain robustness and accuracy at the interface.
Examples of such interface capturing can be found in, e.g., [4, 5, 6].

A disadvantage of the method originally proposed by Godunov is that it requires the solution
of an associated Riemann problem with each flux evaluation. In practice, many such evaluations
are performed during an actual computation. Consequently, the method is notorious for its high
computational costs. To relieve this problem, several approaches have been suggested to reduce
the computational costs of the flux evaluations involved, by approximating the Riemann solution.
Examples of such approximate Riemann solvers are the flux difference splitting schemes (such as
Roe’s [7] and Osher’s [8]).

In the paper we present an Osher-type flux-difference splitting scheme for the Euler equations
describing a two-phase fluid flow. As a preliminary, we give an outline of Osher’s approximate Riemann
solver. Analysis shows that the scheme suffers loss of accuracy in the presence of centered shock waves
and therefore a modified scheme is proposed. Finally, we present the specifics for the aforementioned
hydrodynamic application. Actual computations are deferred to future research.




2. APPROXIMATE RIEMANN SOLUTION

Definition 2.1 Let q € R* = (q1,..- ,42)7, (z,t) € R x R* and f € C*(R*,R*). Consider the
Cauchy problem

%‘FLES) =0, VzeRtek, (2.12)
subject to the initial condition
| ag, if £<0,
q(z,0) = { @ if >0 (2.1b)

with q; and qp constant. The initial value problem (2.1a) and the initial condition (2.1b) define the
Riemann problem.

In the previous section we established that the solution to the Riemann problem can generally be
written in similarity form h(z/t). Denoting by h(z/t;q;,qr) the similarity solution for given q; and
qg, we find f(h(0;q;,qy)) to be the corresponding centered flux, £(qy,qg). This flux is of particular
importance in computational applications: following Godunov’s approach, it can be interpreted as
the flux between two adjacent cells in the discretised domain. Unfortunately, solving the Riemann
problem exactly is computationally expensive and it is therefore necessary to revert to approximate
solution techniques.

In this section, we investigate Osher’s approximate Riemann solver and a modified Osher-type
scheme. We will first present a general outline of the Osher scheme. Subsequently, the approximate
Riemann solution employed in Osher’s scheme is examined and the computed flux approximation is
compared to the exact solution. Finally, we shall propose the modified scheme, based on the preceding
analysis.

2.1 Osher’s scheme

In the scheme developed by Osher [8, 9], the centered flux f(q,,,qy) = f(h(0;qr,qg)) is approximated
by:

qr
Faz, an) = 5f(ar) + 36(an) - 5 [ 1AW)]-dw, (22)

qz

with the absolute value of the Jacobian matrix A(q) defined by |[A(q)| = R(q)-|A(q)|-R(q)™!. Here,
JA(qQ)] = diag(JA ()], - --,|An(q)])- Clearly, the integral term represents the upwind contribution to
the centered flux approximation.

The integral in (2.2) is evaluated along a path T’ = {q(s) : 0 < 8 < 1} C R" in state space, satisfying
q(0) = g, and q(1) = d,, with §; = q; and §; = qg or vice versa. This path is composed of sub-
paths I';, I =1,2,... ,n, where each of the sub-paths connects two adjacent states A1)/ and Gy/p-
Moreover, I'; is tangential to an eigenvector ry(y, where k : {1,2,... ,n} = {1,2,...,n} is a bijective
mapping. It should be appreciated here that Iy is thus a section of the k(l)-path through A-1)/n>
connecting g1y, and §,- Usual choices for the ordering of the sub-paths are the O-variant
k(1) =n — 1 and the P-variant k(I) = 1.

The integral term in (2.2) can be rewritten as a summation of the contributions of the integral over
each of the sub-paths:

I=1 I=1

ar n n
[1amiaw =3 [ A -rpw©)ee = [ sienGupmIAm)-aw.  (23)
qL 1 1
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Obviously, if Ay does not change sign along I';, then the sub-integral can be evaluated to [£(g;,,) —
£(@¢-1)/n)] sign(Aeq))- Then, if Ay = Aggta) = ... = Ag@+p) I8 a linearly degenerate eigenvalue,
the sum in (2.3) concatenates and we simply obtain

"
> / |[A (W) dw = sign(Ax) (A=) E(Qy/n) — F(Qu4py/a)]- (2.4)
i=0 :

Hence, the intermediate stages §(;44)/n,t =1,2,... ,u—1lare of no consequence and may be eliminated

from the composed path I'.
As a result of the choice of the sub-paths I';, the intermediate q;/,, ! =1,2,...,n —1 can be conve-
niently determined by means of the Riemann invariants: Because the sub-path I'; C Req) (G—1)/n)s

7/)221) (q(l—l)/n) = "pgtl) (qJ/n)i I,m=1,2,...,n, m# k(l)' (2'5)

If it is assumed that the k-Riemann invariants in (2.5) have linearly independent gradients, then by
the implicit function theorem, (2.5) constitutes a solvable system of equations from which the §,,,,,
l=1,2,... ,n can be extracted. In many practical cases the intermediate stages can then be solved
explicitly from (2.5). Once the intermediate states @;/,, have been obtained, the flux approximation
f(q;,q5) can be computed using (2.2), (2.3).

2.2 Accuracy _

The flux computed by means of the Osher scheme, f(q;,qz), relies on an approximate solution of the
Riemann problem. Because the approximation can again be written in similarity form, it is useful to
introduce the notation f(qr,qr) = f(h(0;q;,qR)), where h(z/t;qy,qg) stands for the approximate
similarity solution. In this section we investigate the accuracy of the approximate similarity solution
and of the corresponding centered flux approximation.

To evaluate the accuracy of the approximate solution, we examine the inherent representation of
simple waves, contact discontinuities and shock waves. In section 2.1 it was emphasized that the
sub-paths, I';, in Osher’s scheme are actually sections of k(!)-paths. It follows that the intermediate
states §;/n, ! = 0,...,n, in the approximate solution are connected by simple waves only. Clearly,
this representation is correct for simple waves and contact discontinuities. However, shock waves in
the actual solution are then replaced by so-called overturned simple waves, see [11]. We will now show
that this representation is accurate for weak shocks. From [10] we adopt:

Lemma 2.1 Suppose q; and qp are connected by a weak k-shock with shock strength €, i.e., qp €
Se(qr) and Ax(qr) = M (qR) + €, with € a small positive number. Then the change in o k-Riemann
invaeriant across the k-shock is of order O(e%).

Proof: Proof is omitted here, but can be found in {10, pages 326-383]. O
Then, we obtain:

Theorem 2.1 Suppose qr € Se(qy) and A(qr) = M\e(ar) + €. Then a dn € Ri(qy) exists such
that M\c(8g) = Ac(ag) and |Gg — qg| is of order O(e3).

Proof: By definition, ¥{*(q.) = Y7 (dgr), k=1,2,... ,n, k #m. Then, by lemma 2.1,
Y (dr) = ¥¥'(dr) + O(€). (2:6)

System (2.6) can be augmented with Ai(8g) = Mc(qgr) to obtain n equations for dy. Because
rank(Bqyi,- .. ,0q¥F) =n —1 and A, € (Bqu},-.. , 0q¥P)*, det(Oqu},. .- ,0q¥7,0qA) # 0. The
result now simply follows by a Taylor expansion around qg of the terms in 4y of the augmented sys-
tem. O
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From Theorem 2.1 it may be inferred that the intermediate states obtained by a rarefaction-waves-only
approximation are O{e3 ) accurate, with

€max = X (Ai(qq-1)/n) = X(d/n),0) 2.7)

the strength of the strongest shock.

Although the computed intermediate states are accurate even in the presence of (weak) shocks,
the flux approximation f(qy,qg) is not necessarily so. By (2.3), if §z € Ri(qy) and A(q;) > 0 >
AIc (QR)’

f(az,4r) = f(ay) +f@r) - fl@"), (2.8)

with g* € Ri(qy) such that Ax(q*) = 0. In contrast, ignoring terms O(e3), one finds that the actual

flux corresponding to the k-shock is £(q; ) if s(qp;ay) > 0 and £(qp) if s(qg;q;) < 0. Consequently,
the error in the approximate flux in the instance of a centered shock with strength e may be of O(e).

2.8 Modified Scheme

In view of the above, a modification of the scheme is advocated. The rarefaction-waves-only approxi-
mation of the similarity solution is maintained. However, the centered flux approximation is obtained
differently, to avoid loss of accuracy due to centered shock waves.

We propose to extract the intermediate states in the approximate solution to the Riemann problem
from

“/)lm(éi(l-—-l)/n) = ¢{n(a1/n), m=1,2,...,n, m # I, (2'9)

with 8, = q; and §; = qp. This is in fact equivalent to (2.5) with a presumed P-variant ordering of
the sub-paths. Next, approximate contact speeds &,i are obtained:

5t = { Mraxne@ym) £ F Mpaa2@yn) < Eraan2@an/m), (2.10a)
81+ (141)/2 otherwise,
with
~ 1 - 1 N
Si+1)/2 = 50 /2(@u/m) + SM1)/2(E02) /n)- (2.10b)

Estimate (2.10b) of the shock speed is justified by the following theorem, taken from [10}:

Theorem 2.2 Suppose qg € Sk(qy) end A(qy) = Ak(qg) + ¢, € > 0. Then the speed of the k-shock
connecting q;, and qp satisfies s(qr;qg) = $Ak(ay) + 3Ac(ag) + O(?).

Proof: Proof can be found in [10, pages 326-385]. O

Once the intermediate states and contact speeds have been established, the approximate Riemann
solution can be constructed. However, considering that our purpose is to compute an approximation
to the centered flux, we only need to obtain the central part of the approximate solution:

d, i & >0,
G 67 <0<, le{l,...,n-1},
q, i & ,<0<5, le{l,...,n—1},
q.17 lf 0;<07

h(0;q.,q5) = (2.11)

with §* € Ry((_1)/n) such that A;(q") = 0 in case of a centered rarefaction wave. The centered flux
approximation is now simply f(q;,qz) = f(h(0;q;,q »)-
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3. APPLICATIONS IN HYDRODYNAMICS
In the previous section we presented a flux-difference splitting scheme that gives an accurate ap-
proximation of the centered flux in the Riemann problem, even in the presence of (weak) centered
shock waves. A prerequisite for the flux evaluation is the derivation of the intermediate states ;,,
I =1,...,n. Once these states have been obtained, the flux calculation proceeds via straightforward
operations.

In this section we derive the intermediate states for the Euler equations in the case of an immiscible,
compressible two-phase flow model, which uses a level-set function to distinguish the two fluids from
each other.

3.1 Two-Phase Flow

The two phases are supposed to be separated by a moving interface, which is described by the time-
dependent set Z(t) = {x € R® | §(x,t) = 0}. Furthermore, we assume the level-set function 8(x,t) to
be negative in one phase and positive in the other. As a result of the immiscibility of the phases, the
following kinematic condition applies:

% +u-Vo=0, (3.1)

where u € R® again denotes the fluid velocity. Employing the continuity equation for compressible
fluids, we can restate kinematic condition (3.1) in conservation form:

el . = —_— Vo 6= . R .
5 + V-pbu p(at-i-uV)-{- <6t+qu (3.2)
The first term in parentheses vanishes due to (3.1), the second due to continuity. Hence, p§ is a
conserved quantity. Suppose that throughout the entire fluid volume the pressure is related to the
density via an equation of state of the form p = p(8, p). Then, again using u,v,w to designate the

velocity components relative to a Cartesian coordinate system and ignoring spatial derivatives in y
and z direction, we retrieve (2.1a), with q = (pu, pv, pw, p8, p)T and

f(a) = (/a5 +p(Q'4/QSaQ5)741112/¢157‘I1‘I3/Q5:41(14/(15741)T- (3.3)

Equations (2.1a), (3.3) constitute the Euler equations for an immiscible, compressible two-phase flow.
Our first objective now is to derive Riemann invariants for (2.1a), (3.3). We define ¢; = ¢1(6,p) =
+/8p/88 and cy = ¢2(8, p) = \/dp/8p. Then, the Jacobian of (3.3) reads:

2q/¢s O 0 J&las —G/E-Eu/E+c

ot @/es a/ts O 0 —q2q1/ 2
A(q) = 3q a3/ 0 aifgs O —g3q1/ % . (3.4)
a4/as 0 0 @¢i/gs —q4q1/ 2
1 0 0 0 0
The eigenvalues and eigenvectors of A(q) are
M=aq/¢—c Mss=a/6, Is=aq/¢+c, (3.5)
and
rn = (/g5 —c2,4/95,93/95,94/5, n’,
r2 = (Oa 15 09 07 O)T H]
r3 = (0,0,1,0, O)T ) (3.6)
re = (0,0,0-3¢ +Gu,a3)”
rs = (q1/a + 2,42/, 95/05,9/a5,1)" -
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The eigenvalue A;, and the eigenvector rj are genuinely nonlinear for k¥ = 1,5 and linearly degenerate
for k = 2,3,4. Riemann invariants can now be obtained by solving

dq¥k(q)-Tr(q) =0, Vq€eR". (3.7)

The solution is:

2 = q/es+4, P = @fes, Y = @/, P o= /g,

% = 111/Q5, 1/)3 = g3, é = g4, § = D,

3 = /g, Y3 = g, 3 = g4, 3 = p, (3.8a)

i = @/, ¥ = @, 3 = g, i =7

P = qfes—0¢, YE = @/, i = @/, 5 = q4/gs,

with p = p(é, p) and ¢ = ¢(6, p) defined by
pcz(e )
#(6,p) = / —nﬂ-dn- (3.8b)

]

Observe that 8 is a k-Riemann invariant for £ € {1,5}. Hence, it may be inferred that the phase
transition is a contact discontinuity. Moreover, because both u and p are k-Riemann invariants for
k € {2,3,4}, the pressure and the normal velocity component are continuous across the interface.
The intermediate states can now be obtained from (2.9), (3.8). Because the linearly degenerate
eigenvalue ¢ /g5 has algebraic multiplicity 3, only two intermediate states have to be distinguished.

Trivially,
B/ Up Da/3 21
Wys | =| wo |, Wys | =| w ], (3-9
b1/3 6o b2/3 6

and 43 = fiy/3 = @y /5. Then, py/3 and fy3 are determined by

#(6o, p13) + ¢(01, p2/3)
p(001 ﬁl/S)

U — U1 + ¢(00: PO) + ¢(917P1),
p(01,ﬁ2/3)'

(3.10)

We refrain from a further reduction of these expressions and suffice by stating that once the interme-
diate densities have been obtained, 4, /, follows by straightforward computation.
For free-surface water-flow computations, as specific equation of state, we apply

p = p(p,8) = a(8)pwater(p) + (1 — a(6)) peix (p)- (3.11)

Here, o is the volume-of-water fraction, which can be accurately computed from the level-set function
8, pwater () is given by Tait’s equation of state and puir(p) by the homentropic perfect gas law.




References

1. Godunov SK (1959) Finite difference method for numerical computation of discontinuous solutions
of the equations of fluid Dynamics, Matematicheskii Sbornik, 47: 271. (in Russian).

2. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM Journal on Numerical Analysis, 21: 995.

3. Spekreijse SP (1987) Multigrid solution of monotone second-order discretizations of hyperbolic
conservation laws, Mathematics of Computation, 49: 135.

4. Mulder WA, Osher S, and Sethian JA (1992) Computing interface motion in compressible gas
dynamics, Journal of Computational Physics, 100: 209.

5. Chang YC, Hou TY, Merriman B, and Osher S (1996) A level set formulation of Eulerian interface
capturing methods for incompressible fluid flows, Journal of Computational Physics, 124: 449.

6. Kelecy FJ, and Pletcher RH (1997) The development of a free surface capturing approach for
multidimensional free surface flows in closed containers, Journal of Computational Physics, 138:
939.

7. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes, Journal
of Computational Physics, 43: 357.

8. Osher S, and Solomon F (1982) Upwind difference schemes for hyperbolic conservation laws, Math-
ematics of Computation, 38: 339.

9. Osher S, and Chakravarthy S (1983) Upwind schemes and boundary conditions with applications
to Euler equations in general geometries, Journal of Computational Physics, 50: 447.

10. Smoller J (1983) Shock Waves and Reaction-Diffusion Equations, Springer, Berlin.

11. Van Leer B (1984) On the relation between the upwind-differencing schemes of Godunov, Engquist-
Osher and Roe, SIAM Journal on Scientific and Statistical Computing, 5: 1.



